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ABSTRACT Microscope images of fluctuating biopolymers contain a wealth of information about their underlying mechanics
and dynamics. However, successful extraction of this information requires precise localization of filament position and shape
from thousands of noisy images. Here, we present careful measurements of the bending dynamics of filamentous (F-)actin and
microtubules at thermal equilibrium with high spatial and temporal resolution using a new, simple but robust, automated image
analysis algorithm with subpixel accuracy. We find that slender actin filaments have a persistence length of ;17 mm, and
display a q�4-dependent relaxation spectrum, as expected from viscous drag. Microtubules have a persistence length of several
millimeters; interestingly, there is a small correlation between total microtubule length and rigidity, with shorter filaments
appearing softer. However, we show that this correlation can arise, in principle, from intrinsic measurement noise that must be
carefully considered. The dynamic behavior of the bending of microtubules also appears more complex than that of F-actin,
reflecting their higher-order structure. These results emphasize both the power and limitations of light microscopy techniques for
studying the mechanics and dynamics of biopolymers.

INTRODUCTION

Actin filaments and microtubules are semiflexible biopoly-

mers that form the elastic cytoskeletal network within cells

that controls cell migration, division, cargo transport, and

mechanosensing (1). Understanding the mechanical behav-

ior of these filaments is thus of central importance for

establishing how they function as a dynamic mechanical

scaffold within living cells. Indeed, mechanical models of

the cell require accurate measurements of the stiffness and

dynamical behavior of the component filaments (2–4).

However, the semiflexible macromolecular backbone of

microtubules and actin filaments results in physical behavior

that remains incompletely understood.

Using light microscope images to directly measure the

shape fluctuations of individual biopolymers is a powerful

technique for studying their dynamics and mechanical

behavior (5–9). By extracting a set of filament coordinates

from each image, the variance of the curvature fluctuations

induced by thermal motion can be used to obtain the bending

rigidity. The rigidity is typically expressed in terms of the

length scale beyond which the filament shows significant

curvature due to thermal forces, known as the persistence

length, lp: Changes in thermally-induced curvature occur on

a timescale that is set by viscous drag from the surrounding

fluid. This time can be obtained from the relaxation time of a

shape autocorrelation function, such as the mean-squared

difference in curvature calculated for increasing lag times.

Utilizing variations of this technique, actin filaments have

been shown to have a persistence length of ;17 mm (5,8,10),

although they were initially suggested to have a length scale-

dependent rigidity (11). Microtubules have been shown to be

orders of magnitude more stiff, with a persistence length on

the order of millimeters (8). However, recent studies have

suggested that microtubule rigidity may depend on their

growth velocity (7) and other factors related to their mac-

romolecular structure (12–14). Indeed, it was recently

suggested that inter-protofilament shearing leads to a soft-

ening of shorter microtubules (15). Other studies have

suggested that internal dissipation mechanisms may domi-

nate over hydrodynamic drag to increase the relaxation times

of microtubules on short length scales (7,16).

Successfully extracting such mechanical information from

microscope images is limited by position uncertainties re-

sulting from image noise, requiring precise filament tracking.

Despite the need for accurate filament localization, reports

utilizing this technique often use semi-manual filament

tracking methods and do not report a noise floor. Automated

video tracking of objects with spherical symmetry, such as

colloidal particles and fluorescent point-sources, is a well-

developed technique for quantifying their dynamic behavior.

Tracking of large numbers of spherical probe particles is

central to microrheological measurements of the mechanical

behavior of soft materials such as biopolymer gels and even

living cells (17–19). Particle tracking algorithms typically

employ an initial particle localization, such as intensity
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maxima, followed by particle position refinement using an

intensity weighted center of mass (20) or fitting to a Gaussian

or parabolic function. These algorithms can be used to obtain

particle positions with subpixel accuracy. Positions are then

linked in time to establish the trajectories of the particles.

Precise tracking of objects with nonspherical symmetry,

such as biopolymer filaments, presents more of a challenge.

Unlike colloidal particles, the shape of the filament is not

known a priori and thus conventional automated fitting

techniques are no longer applicable. There is an extensive

computer vision literature that describes identification of lin-

ear structures, such as roads or capillary tubes, from complex

landscapes (21). A related technique for automated tracking

of differential interference contrast (DIC) images of linear

structures such as microtubules has been described (22). A

recent study describes automated tracking of uniformly-sized

fluorescent colloidal rods (23). There are also a number of

papers describing filament-centroid tracking routines for in

vitro motility assays of fluorescent actin filaments gliding

over myosin-coated surfaces (24,25). However, to our know-

ledge there have been no reports describing automated

contour tracking of fluctuating fluorescent filaments with

sub-pixel accuracy.

In this paper, we develop and utilize a robust automated

image analysis algorithm for tracking fluorescently-labeled

biopolymer filaments with subpixel accuracy. We first dem-

onstrate the accuracy of this technique by tracking im-

mobilized fluorescent biopolymers and show that we obtain a

root mean-square precision of ;0.15 pixel (;20 nm), even

as the filaments begin to be photobleached after hundreds of

exposures. We then use this technique to study the shape

fluctuations of microtubules and actin filaments at thermal

equilibrium down to short length and time scales. This

allows us to address recent conflicting reports of the

mechanics and dynamics of biopolymer bending fluctu-

ations, particularly those of microtubules. The persis-

tence length of actin filaments obtained from our

measurements agrees well with previous experiments

(5,8,10), lp � 17 mm. We obtain microtubule persistence

lengths on the order of a few mm, also in agreement with

previous measurements (7,8,13,14). Our data show a

slight correlation between filament length and stiffness,

consistent with a recent study (15). However, we dem-

onstrate that this correlation can in principle arise from

inherent noise limitations that occur even with high precision

measurements. Thus, over the range we study, there does not

appear to be a systematic dependence of the bending rigidity

on length or wavevector, in agreement with other studies

(7,8,13,14). However, after a careful analysis of the relax-

ation times of the fluctuating normal modes, we find

evidence that microtubules do display anomalous bending

dynamics that reflects their more complex molecular struc-

ture (26) compared to actin filaments. Although the relax-

ation times of fluctuating actin filaments are consistent with

simple viscous drag, for microtubules they are much longer

than expected from hydrodynamic drag on short length

scales. This effect may be due to a surprisingly large internal

dissipation that dominates the relaxation times of microtu-

bules on biologically relevant length and time scales. Our

findings emphasize both the power and limitations of light

microscopy techniques for probing the complex mechanical

behavior of semiflexible polymers.

Filament tracking algorithm

The analysis algorithm used to track the shape of fluo-

rescently labeled biopolymers in successive images consists

of the steps detailed below. Briefly, an initial rough estimate

of the position of a filament is first determined by thresh-

olding the image. Pixels above threshold are then skeleton-

ized to obtain a 1-pixel-wide representation of the filament.

A polynomial fit to this skeleton is then used to walk along

the contour of the filament, refining the position estimate by

finding the intensity maximum along perpendicular cuts

across the filament.

Background noise reduction

We first performed an image noise reduction by convolving

each pixel of the image with a Gaussian kernel over a local

region of size w:

AGaussðx; yÞ ¼
1

Bðx; yÞ +
w

i;j¼�w

Aðx 1 i; y 1 jÞexp �i
2
1 j

2

4

� �
;

(1)

where Bðx; yÞ is an appropriate normalization. The long

wavelength background intensity variation is also

accounted for by averaging each pixel of the unfiltered

image over a local region of size w, to obtain Abackgroundðx; yÞ:
The final filtered image is then obtained from: Afilterðx; yÞ ¼
abs AGaussðx; yÞ � Abackgroundðx; yÞ
� �

(20). For initial filament

localization, the size w was set to be around three times

larger than the width of the filament, ;5 pixels in our

system. For refinement of the initial filament localization, we

limit the convolution of local position information with

neighboring position information by setting the filter size to

approximately the width of the filament. An example of the

result of this procedure for a typical image of a fluorescently

labeled microtubule (Fig. 1 A) is shown in Fig. 1 B. Filters

designed specifically for highlighting linear structures are

another alternative (27).

Thresholding

Thresholding was done to separate the filament from the

remaining background intensity fluctuations. Pixels with a

value greater than the threshold value are assigned a value of

1, whereas those with a value less than the threshold value

are assigned a value of 0. The threshold value is given by
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f ¼ ÆIijæ1msij; where ÆIijæ is the average intensity value of

all pixels ij, and sij is the standard deviation of the pixel

intensity, both of which are dominated by the nonfilament

background pixels. For high-frequency image acquisition,

the signal/noise ratio (s/n) is usually small; thus, it is critical

to determine an appropriate threshold value by determining

the number of standard deviations away from the average, m.

If m is too small, some background may be included, whereas

if it is large, the entire filament may not be included. We

typically start with a small value of m(;3) and successively

increase its value in small increments (0.2) until the backbone

of the thresholded region is well fit by a polynomial. An

example of thresholding is shown in Fig. 1 C.

Skeletonization

For good s/n and an appropriate threshold value, pixels

above threshold will cover the fluorescent filament in a

cluster several pixels wide. This cluster can be thinned to a

1-pixel-wide line using a skeletonization routine that erodes

pixels while maintaining cluster connectedness (28). Skel-

etonization has the advantage that small clusters correspond-

ing to nonfilament background fluctuations above threshold

are typically eliminated by the erosion process. Persistent

fluorescent specks that are still not eliminated are ignored

using a simple routine to exclude objects above threshold

from specific regions of the image. If necessary, more

complex pixel clustering algorithms may be used to identify

pixels associated with the desired filament (28). An example

of skeletonization of a thresholded filament is shown in Fig.

1 D. This line, corresponding to a set of position coordinates

x ¼ i, y ¼ j such that Iij ¼ 1; provides a first, imprecise,

estimate of the filament location.

Polynomial fitting and filament rotation

We refine the initial position estimate by analyzing the inten-

sity distribution of sections taken perpendicular to the local

slope of the filament (Fig. 2 A). To obtain the local slope,

we fit the xy coordinates of the skeleton with a polynomial

of order p. The polynomial degree required depends on the

amount of curvature in the filaments under study; we

typically use p ¼ 3–5 for microtubules and actin filaments.

We thus obtain a curve f ðxÞ ¼ +p

i¼0
cix

i that can be dif-

ferentiated to obtain an estimate of the local slope of the

filament at position x0: uðx0Þ ¼ tan�1 df
dxjx¼x0

: To obtain the

FIGURE 1 Example of the initial image processing stages of the filament

localization algorithm for a typical fluorescence micrograph of an Alexa-488

dye-labeled microtubule constrained to move in a quasi-two-dimensional

chamber. (A) Unprocessed image, and image after bandpassing, as in Eq.

1 (B), followed by thresholding (C), and skeletonization (D). Note that the

spurious speck in the thresholded image is eliminated upon skeletonization.

FIGURE 2 Example of filament position refinement by fitting Gaussian

intensity profiles along cuts perpendicular to the filament contour. (A)

Skeleton (see Fig. 1 D) in the xy coordinate frame with polynomial fit and

schematic perpendicular cuts. (B) The intensity profile along a perpendicular

cut of an unprocessed image is shown (solid squares). After bandpassing the

image, the intensity distribution (open squares) is fit to a Gaussian (solid

line). The filament location is taken to be the maximum of the Gaussian.
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intensity profile of the filament perpendicular to this local

slope, we rotate the original image by an angle uðx0Þ around

the position, �xrot ¼ ðxo; f ðxoÞÞ; to orient the filament hor-

izontally. Successful image rotation requires the use of a

good interpolation algorithm that maps the intensity of all

pixels onto the rotated image without introducing artifacts.

Image rotation routines implementing good interpolation

algorithms accompany software packages such as IDL and

Matlab. The process is computationally intensive, and thus

we restrict image rotation to a local region of interest around

the filament with coordinates ½ðx0�bÞ : ðx01bÞ;ðf ðx0Þ�bÞ :
ðf ðx0Þ1bÞ�; where b is larger than the extent of the Gaussian

kernel, w.

Because the skeletonization procedure erodes pixels at the

ends of the thresholded filament, we sample perpendicular

sections along the polynomial backbone from, typically, 4

pixels before to 4 pixels after the end points of the skeleton.

We calculate the integrated signal along the perpendicular

column of pixels k, M ¼ +
k

Ik; and set a threshold value

(‘‘masscut’’) for identified filament positions. The first and

last filament positions with a signal mass above threshold

define the two ends of the filament. Because fluorescently

labeled biopolymers frequently display nonuniform labeling

along their length, masscut thresholding often leaves holes in

the position identification of the filament, particularly in

low-s/n images. We fill in these gaps by linear interpolation

between the nearest successfully sampled points.

Position refinement by Gaussian fitting

We proceed to analyze the intensity distribution of the

vertical column of pixels in each rotated region. An example

of such an intensity distribution is shown in Fig. 2 B (solid
squares). By applying the Gaussian convolution kernel and

background subtraction to this rotated local region, we

improve the s/n ratio by eliminating both high- and low-

frequency noise (Fig. 2 B, open squares). The center of the

filament can be identified from this intensity distribution

using either functional fitting or an intensity-weighted center

of mass. It is important to note that the Gaussian filter leads

to averaging of pixel intensities over a local region defined

by the size of the Gaussian kernel (;5–10 pixels); averaging

the filament centroid obtained from adjacent perpendicular

cuts of unbandpassed images could provide an alternative s/n

improvement, without undesirable averaging in the perpen-

dicular direction. We choose to fit the intensity distribution

to a Gaussian intensity profile (Fig. 2 B, solid line), which

yields the highest precision for tracking of spherical objects

(29). We find that the primary advantage of Gaussian fitting

over an intensity-weighted center-of-mass approach is its

relative insensitivity to any residual background signal.

The position of the center of the Gaussian, y9g; identifies

the position of the filament in the rotated frame. This center

position is then mapped back onto the unrotated full image

coordinate system to obtain the real-space position of the

mth sampled point �xm; using ym¼ f ðx0Þ1f½y9g� f ðx0Þ�3
cosðuðx0ÞÞg and xm¼ x0�f½y9g� f ðx0Þ�3sinðuðx0ÞÞg: This

procedure is repeated along the polynomial at the desired

sampling frequency, typically in steps of size Ds¼2 pixels,

until a full set of refined filament coordinates is obtained.

MATERIALS AND METHODS

Monomeric (G) actin was purified from rabbit skeletal muscle (30), with an

additional gel-column chromatography step (Sephacryl S-200) to remove

residual cross-linking and capping proteins. Actin filaments stabilized with

phalloidin were prepared by polymerizing G-actin in AB-buffer (25 mM

imidazole, 50 mM KCl, 2 mM MgCl2, 1 mM EGTA, and 1 mM dithiothreitol,

pH 7.4). Filaments were fluorescently labeled by using Alexa-488-modified

G-actin, or by stabilizing unlabeled actin filaments with Alexa-488 phalloidin

(Molecular Probes). We analyzed actin filaments with contour lengths

between 8 and 15 mm. Tubulin was purified from bovine brain according to

standard procedures and fluorescently labeled with Alexa-488. Microtubules

were polymerized in K-Pipes buffer (80 mM K-Pipes, 1 mM EGTA, and

1 mM MgCl2, pH 6.8) at 37�C and stabilized with 10 mM taxol.

Microtubules were imaged in a quasi-two-dimensional sample chamber

that was made by placing a small volume (typically 0.3 mL) of a dilute

solution of stabilized filaments augmented with a standard antioxidant

mixture (glucose oxidase, catalase, glucose, 2-mercaptoethanol) (31) to slow

photobleaching between a microscope slide and coverslip. The edges of

the coverslip were sealed with mineral oil to prevent fluid flow due to

evaporation. Adsorption of filaments onto the glass surfaces was avoided by

passivating the glass with adsorbed bovine serum albumin or covalently

attached poly-(ethylene glycol) chains (MPEG-silane-5000, Nektar, San

Carlos, CA). All experiments were performed at room temperature.

Fluorescent images of microtubules were acquired on a Leica DM-IRB

inverted microscope equipped with either a Hamamatsu intensified charge-

coupled device (CCD) camera C7190-21 (exposure time 33 ms, 0.136 mm/

pixel) or a Hamamatsu ORCA CCD camera C4742-95 (exposure time 59

ms, 0.128 mm/pixel) (Hamamatsu City, Japan). Images of actin filaments

and some microtubules were obtained using a Nikon inverted microscope

with Coolsnap HQ camera (exposure time of 5–100 ms, 0.129–0.194 mm/

pixel). Microtubules were also imaged with a 10-ms exposure using a high-

speed camera (Phantom V7, Vision Research, Wayne, NJ) equipped with an

image intensifier (Model VS4-1845HS, Video Scope International, Dulles,

VA). Some actin filament bending data (see Fig. 7) was obtained using a

second method to slow down the filament dynamics by adding nonadsorbing

polymer (2–3%, Dextran 500,000 g/mol). The polymer induces an attractive

depletion interaction between the coverglass and the filaments, leading to

confinement of the filaments close to the bottom surface. Using these

samples, we were able to acquire images with either epi-illumination or total

internal reflection fluorescence (TIRF) illumination. Due to the low levels of

background fluorescence, we were able to decrease exposure time with TIRF

illumination to a few milliseconds.

The data in Fig. 11 B were fit to a line to obtain a slope of �0.050 6

0.066, indicating no statistically significant correlation between persistence

length, lp; and wavevector, q. In addition, the correlation coefficient was

calculated using r ¼ slpq=slp sq;where slpq is the covariance between lp and

q, and slp and sq is the standard deviation of lp and q, respectively. The

values of r vary from 1 (strongly correlated) to �1 (strongly anticorrelated).

We obtained a value of �0.096, which is a statistically insignificant

correlation (p . 0.005).

RESULTS

Evaluation of tracking precision

As a first test to evaluate the performance of our algorithm

we determined the uncertainty in filament localization
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arising from camera shot noise and tracking limitations. This

was accomplished by analyzing the shape fluctuations of

microtubules that were immobilized by physically adhering

them to poly-L-lysine coated surfaces. These microtubules

were locked tightly to the glass coverslip surface, so any

residual filament shape fluctuations that we measured would

be due to uncertainty in filament localization inherent in our

technique. To visualize the typical noise level, we overlay

the extracted shapes of an immobilized filament for 10

consecutive frames of a movie in Fig. 3. The insets show

higher-magnification views of two representative positions

along the filament against a pixel-sized grid. This explicitly

demonstrates that we obtained subpixel tracking accuracy

with a noise level of ;0.1–0.2 pixels (;20 nm). This degree

of accuracy is representative of the filaments we track in typ-

ical conditions, although, as we quantify below, the tracking

accuracy decreased with decreasing s/n. Since spherically

symmetric colloidal particles are much more straightforward

to track, and typically result in ;0.1-pixel accuracy, our fil-

ament tracking algorithm performed well, with a comparable

root mean-squared (RMS) noise level.

Bending rigidity of microtubules and actin
filaments from mode analysis

We track microtubules and actin filaments freely fluctuating in

quasi-two-dimensional chambers. We obtain the filament

bending rigidities by analyzing the shape fluctuations using a

Fourier decomposition technique developed in previous stud-

ies (8,9). From the pixel coordinates ðxm; ymÞ of the filaments

we first calculate the tangent angle uðsÞ as a function of

arclength s, using: uðsmÞ ¼ tan�1ðym11 � ymÞ= ðxm11 � xmÞ;
where

sm ¼ +
m�1

j¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj11 � xjÞ2 1 ðyj11 � yjÞ2

q( )

1 1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxm11 � xmÞ2 1 ðym11 � ymÞ2

q
:

The tangent angle is then decomposed into a sum of cosines,

uðsÞ ¼
ffiffiffi
2

L

r
+
N

n¼0

aq cosðqsÞ; (2)

where the wave vector q is defined as q ¼ np=L; with n the

mode number and L the filament contour length (8). A cosine

expansion of the tangent angle using different normalization

prefactors has been used in other studies (9), but we find the

normalization used by Gittes et al. most natural since it re-

sults in a length-independent variance of the mode ampli-

tude. Use of this pure cosine mode decomposition assumes a

zero-curvature boundary condition at the free filament ends,

appropriate for freely fluctuating filaments.

The amplitudes, aq; of the first 24 bending modes of a

freely fluctuating microtubule are plotted as a function of

time in each of the subpanels of Fig. 4. The microtubule has a

nonzero intrinsic curvature, u0ðsÞ ¼
ffiffiffiffiffiffiffiffi
2=L

p
+N

n¼0
a0

q cosðqsÞ;
resulting in a nonzero mean amplitude. The variance of the

lower modes contains information about the flexural rigidity,

whereas the amplitude of the higher modes is dominated by

experimental noise. The amplitudes of these higher modes

widen with time (Fig. 4, inset) due to photobleaching and

concomitant reduction of the s/n.

A convenient feature of the cosine expansion in Eq. 2 is

that random noise due to errors in filament localization obeys

the following simple relation (8):

FIGURE 3 Filament contours for a microtubule fixed to an oppositely

charged, poly-L-lysine-coated glass surface. (Insets) Higher-magnification

views of 10 consecutive filament contours from a video acquisition; the pixel

size is represented by the gray grid, demonstrating that the filament tracking

algorithm performs with subpixel accuracy.

FIGURE 4 The amplitude of 24 bending modes for the microtubule shown

in Fig. 1, plotted as a function of time in each of the subpanels. The micro-

tubule has intrinsic curvature, resulting in a nonzero mean amplitude. The

variance of the lower modes contains information about the flexural rigidity,

whereas the amplitude of the higher modes is dominated by experimental

noise. The amplitudes widen with time (see inset) due to photobleaching and

concomitant reduction of the signal/noise ratio.
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Æða0

q � aqÞ2ænoise ¼
4

L
e2

1 1 ðN � 2Þsin
2 np

2ðN � 1Þ

� �� �
; (3)

where a0
q is the mode amplitude corresponding to the fila-

ment’s intrinsic curvature, e2 is the mean-squared error in

filament localization, and N is the number of position points

sampled along the filament. We tested the validity of Eq. 3

by performing a mode analysis on immobilized microtu-

bules. The variance in mode amplitude due to noise could be

well fit to the above expression, as shown in Fig. 5 A. From

this fit, we obtain a RMS error
ffiffiffiffi
e2
p
� 0:14 pixels, in good

agreement with the direct measurement of the noise floor

shown in Fig. 3.

By fitting the variance in the mode amplitude obtained from

later frames of a movie sequence of an immobilized micro-

tubule, we were able to evaluate the robustness of our tracking

algorithm to decreasing s/n caused by photobleaching. Fig. 5

B shows that, as expected, the variance increases with time,

reflecting the decreasing ability to precisely localize the

position of the filament as it photobleaches. However, even

after 900 frames, when the s/n has decreased by ;20%, the

error in pixel position is still only 0.25 pixels. With a high-

sensitivity CCD camera, the s/n and corresponding tracking

precision can be improved and maintained for many frames;

we have successfully tracked filaments for over 7000 frames.

We note that the error in filament localization introduces

an increase in the measured contour length of the filament,

DL, which is of order DL=L � e2=Ds2 (8). With the high

tracking accuracy of our algorithm, this error should be ,1%

and can thus be neglected. A more important source of error

is the fact that the ends of the filaments must be defined in

each successive image by setting a masscut value. However,

we find fluctuations in the measured length of the filament to

be of order dL � 1 pixel. For filaments of 10 mm or longer,

this corresponds to an error in length of ,1%, which is

negligibly small.

To investigate the time dependence of the mode ampli-

tudes, aq; we plot the mean-squared amplitudes of the first

four modes of a 30-mm-long microtubule as a function of lag

time in Fig. 6 A. The fluctuations in mode amplitude at a

given lag time display a Gaussian distribution, suggesting

that small intrinsic curvature on long length scales helps

avoid artifacts from filament rotation (8). The variance of the

distribution was therefore obtained by fitting a Gaussian to a

histogram of the data; direct calculation of the variance is

less precise due to occasional filament misidentification that

greatly exaggerates a direct calculation of the variance.

We first analyze the long-time limit, where the bending

mode amplitudes have decorrelated. To understand this limit,

we note that the bending energy U of a curved filament can

be expressed as an integral of its deviation in curvature from

the intrinsic curvature along the filament backbone (8,32):

U ¼ 1

2
k

Z L

0

@u

@s
� @u0

@s

� �2

ds; (4)

where k ¼ kBT 3 lp is the bending rigidity; this is known

as the worm-like chain Hamiltonian. By differentiation of

Eq. 2 and subsequent integration, one obtains: U ¼ ð1=2Þ3
k +N

n¼1
q2ða0

q � aqÞ2: By the equipartition theorem, the

saturating values of the mean-square difference of the

mode amplitude fluctuations are

Æðaqðt 1 DtÞ � aqðtÞÞ2æt;Dt�t ¼
2kBT

kq
2 ; (5)

where kB is Boltzmann’s constant, T is the temperature, Dt is

the lag time between different images, and t is the relaxation

(correlation) time of the mode. The modes must be fully

decorrelated to accurately obtain the saturating variance,

requiring the long-time limit Dt� t:
The saturation levels of the mean-square amplitudes

extracted from the data in Fig. 6 A, plotted as a function of

mode number, are shown in Fig. 6 B. Long-wavelength

fluctuations corresponding to the first few modes of typical

filaments are well above the noise floor and reflect curvature

FIGURE 5 (A) Variance of the Fourier coefficients aq of each mode

amplitude plotted as a function of mode number n, for an individual

immobilized microtubule. (B) The error in filament localization increases with

frame number (i.e., time) as the signal/noise ratio of the video images is

reduced due to photobleaching. Squares, frames 0–200; circles, frames 200–

400, triangles, frames 400–600, inverted triangles, frames 600–800, diamonds,

frames 800–1000. Filaments can be tracked with subpixel accuracy for a

duration of typically 2000 frames.
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fluctutions due to thermal energy. The saturating amplitudes

of the first few modes scale with the expected q�2 depen-

dence of Eq. 5 (Fig. 2 B, solid line). Higher modes cannot be

used if their relaxation timescale, t; is similar to or shorter

than the exposure time texp (5–100 ms in our studies). The

fluctuations of these modes are effectively blurred, causing

them to appear stiffer. We were able to extend the mea-

surable q range to higher q values by using short exposure

times, either with TIRF illumination (33,34), or by using a

high-speed camera equipped with an intensifier. As ex-

pected, for data acquired using short exposure times, the

regime displaying the expected q�2 dependence is extended,

as demonstrated in Fig. 7.

We obtain the persistence length of filaments by fitting the

saturating mean-square amplitude versus q to Eq. 5. The fits

were extended over the range of modes for which no sys-

tematic deviation below q�2 was observed, i.e., texp � t

(typically, the first three to five modes). From these fits, we

find a persistence length lp of 17.0 6 2.8 mm (mean 6 SD) for

actin filaments, in good agreement with previous studies

(5,8,10). This persistence length is independent of the length

of the actin filaments within the observed range of 8–15 mm,

as shown in Fig. 8 A. In contrast, for microtubules, we find

a small apparent correlation between lp and length: short

filaments tend to appear softer, as shown in Fig. 8 B.

Microtubules with lengths between 25 and 66 mm have an

average persistence length of 2.8 6 1 mm (mean 6 SD),

similar to previously reported values (7,8,14) (Fig. 8 B).

Shorter filaments with lengths in the range 18–25 mm have a

lower average persistence length of 1.5 6 0.7 mm. The data

are thus in qualitative agreement with a recent report

suggesting that the internal protofilament structure of micro-

tubules leads to a bending rigidity that depends on total

microtubule length (15). Indeed, our data can be fit reasonably

well to the reported functional form of this dependence lp ¼
lNp ½11 Lcrit=Lð Þ2��1; with lNp ¼ 4:5 mm; and Lcrit ¼ 30 mm;
as shown by the dashed line in Fig. 8 B. However, the close

proximity of the noise floor both in our measurements (Fig. 8

B, dotted line) and in those of Pampaloni et al. (15) suggest a

cautious interpretation of these results.

Bending relaxation timescales

By using a Fourier decomposition of the filament shape,

we can readily determine mode relaxation times from the

autocorrelation function, as shown in Fig. 6 A. However,

these Fourier modes are only approximations of the true

normal modes of the dynamical equation of motion (see

Appendix). Although a Fourier decomposition is suitable for

determining the static behavior, as described above, Fourier

modes are not normal modes of the system. Instead, Fourier

modes will reflect the combined behavior of different normal

modes relaxing on different timescales. Nevertheless, the

FIGURE 6 (A) Time dependence of

the mean-square amplitude of Fourier

coefficients aq of the first four bending

modes of a 30-mm -long microtubule,

with fits to Eq. 6. (Inset) Note that data

scale together when plotted as a func-

tion of the scaled variables MSDðaqÞ=
MSDðaqÞplateau and t/t. (B) Mean-square

amplitudes of the Fourier coefficients aq

plotted as a function of mode number n,

for increasing lag times Dt ¼ 0.059 s,

0.0177 s, and 5.9 s. At longer lag times,

the variance of the amplitude for the first

few modes approaches the expected

q2-dependence of Eq. 6, with a persis-

tence length of 4 mm (decreasing solid

line). At higher mode numbers, the am-

plitudes are dominated by a RMS noise

of 0.15 pixel (increasing solid line).

FIGURE 7 Saturation values of the mean-square amplitudes of the bend-

ing modes of 12 actin filaments imaged using different ratios of exposure

time to mode relaxation time. Light gray squares were imaged with 100 ms

exposure in aqueous buffer, gray triangles were imaged with 100 ms ex-

posure time in a viscous background solution. Black circles were imaged

with 5–10 ms exposure time using TIRF illumination. The onset of deviation

from q2-scaling (black line, slope 1/lp¼ 17 mm) corresponds to wavevectors

for which the relaxation time roughly equals the exposure time; fluctuations

for larger wavevectors are blurred and register as smaller values.
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Fourier modes are a convenient basis set that completely

captures the instantaneous filament shape. It is therefore

possible to express the true normal-mode amplitudes in

terms of our measured amplitudes aqðtÞ; and thus to measure

the normal-mode relaxation rates. A more complete descrip-

tion of this procedure is provided in the Appendix.

Surprisingly, we found that over all experimentally

accessible timescales, mode-mixing effects arising from the

fact that these Fourier modes are not pure normal modes

were small. This can be understood as follows. By symme-

try, the odd (even) Fourier modes decompose into only odd

(even) normal modes Jl: Strictly speaking, this means that

the amplitudes in Eq. 5 for finite Dt exhibit non-single-

exponential relaxation. For the lowest Fourier modes, n ¼ 1,

2; however, only the corresponding l ¼ 1, 2 normal modes

are apparent at later stages of relaxation, since the higher-

order normal modes relax more quickly. A comparison

between the first Fourier mode and the corresponding normal

mode of a microtubule is shown in Fig. 9 A. The relaxation

times obtained from fits to a single exponential are very

similar: 0.84 s for the Fourier mode and 0.82 s for the normal

mode. For the higher Fourier modes, n ¼ 3, 4. . . , the

filament end effects are less apparent, and the normal modes

are better approximated by Fourier modes. However, as

discussed in the Appendix, since these modes mix with more

slowly decaying modes the non-single-exponential behavior

may be apparent at longer times in the relaxation. Neverthe-

less, these non-single-exponential corrections can be shown to

be of order 10–15%. Thus, in practice, the dynamical behavior

of the cosine modes is well approximated by the single-

exponential relaxation of the normal modes:

Æðaqðt 1 DtÞ � aqðtÞÞ2æt ¼ ð1� e
�Dt=tÞ2kBT

kq
2 : (6)

As shown in the appendix, the mode relaxation times t are

given by:

t ’ g

kq
4

�
; (7)

where q� � ðn11=2Þp=L: The hydrodynamic drag coeffi-

cient for a rod confined between two surfaces is approxi-

mated by

g � 4ph

ln
2h

a

� �;

where h is the buffer viscosity, h is the distance between the

filament and the coverslips (;1 mm), and 2a is the filament

diameter (8,10). The mean-square fluctuation of the mode

amplitudes can indeed be well fit to Eq. 6 (Fig. 6 A, lines).

The collected data for the relaxation times t of 26

microtubules and 22 actin filaments, obtained from fits to Eq.

6, are shown in Fig. 9. For actin filaments (circles), the re-

laxation times decay rapidly with q�; consistent with the

expected q�4
� -dependence. We fit the data to Eq. 7; using the

average persistence length, lp ¼ 17:0 mm; we obtain a drag

coefficient of gactin ¼ 9:4 mPa�s, in reasonable agreement

with the calculated value of 1.8 mPa�s obtained from the

approximate hydrodynamic expression. The inset shows the

normalized relaxation timescales, tkq4
�; which are roughly

constant. This indicates that the bending relaxation timescale

for actin filaments is set by hydrodynamic drag. The relax-

ation timescales of microtubules show a similar behavior

(Fig. 9, squares) at the smallest wavevectors, with the re-

laxation times decreasing rapidly as t � q�4
� : However, at

larger wavectors, the relaxation times are much larger than

expected and appear to become wavevector-independent.

Data taken with faster acquisition time also show this trend,

although some points remain consistent with a simple t �
q�4
� scaling, suggesting that the dynamic behavior of micro-

tubules is heterogeneous.

FIGURE 8 Persistence length of 22 actin filaments and 26 microtubules

plotted as a function of filament length. (A) Actin filaments show a relatively

narrow distribution of persistence lengths with an average lp ¼ 17:0 6 2:8

mm (dashed line). There does not appear to be any dependence on filament

length over the range studied. (B) Microtubules display a broader dis-

tribution of persistence lengths, and there is an apparent small correlation

between the bending rigidity and filament length, with shorter filaments

appearing softer. Our data can be fit to a length-dependent expression for

the persistence length, lp ¼ lNp ½11 Lcrit=Lð Þ2��1; with lNp ¼ 4:5 mm; and

Lcrit ¼ 30 mm; as shown by the dashed line (15). However, the dotted line,

denoting a conservative estimate of the intrinsic noise limitations, suggests

that this correlation may only reflect a noise limitation.
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For microtubules, a similar deviation from q�4
� -depen-

dence was recently reported for the relaxation times of

thermally fluctuating microtubules clamped at one end (7). A

possible explanation for the origin of these anomalous relaxa-

tion times comes from a recent study (16) that incorporates

an additional friction term in the Langevin equation (see

Appendix), describing the bending dynamics of thermally

fluctuating biopolymers:

k
@

4u

@s
4 1 g

@u

@t
1 g9

@

@t

@
4u

@s
4

� �
¼ f ðs; tÞ: (8)

This additional third term represents internal friction

within the biopolymer. The mode relaxation times (Eq. 7)

now become:

t ¼ g 1 g9q
4

�

kq
4

�
; (9)

where g9=a4 can be considered an effective internal viscosity.

Equation 9 implies that at wavevectors larger than qc;ðg=
g9Þ1=4; internal friction will dominate and the relaxation times

correspondingly become q�-independent. The microtubule re-

laxation time data can be fit to Eq. 9, as shown in Fig. 9 B; using

the average persistence length, lp ¼ 2.5 mm, we obtain a drag

coefficient of gMT ¼ 8:3 mPa�s, in fair agreement with the

value of 2.4 mPa�s estimated from the approximate hydrody-

namic expression. From the fit, we also obtain an internal

dissipation of g9 ¼ 16 3 10�25 N �m2 � s , corresponding to an

internal viscosity of g9=a4
MT � 107 mPa�s. Interestingly, this

value is similar to that obtained in the previous study,

g9 ¼ 6:9 3 10�25 N �m2 � s (7) (fit shown in Fig. 9 B, inset).
Thus, in both cases, microtubules appear to cross over to a

wavevector-independent relaxation regime at qc � 0:3 mm�1;
on a length scale corresponding to l � 20 mm.

Microtubules in cells

Our tracking algorithm can also be extended to extract the

contours of fluorescently labeled microtubules within living

cells. Because the cytoskeleton of living cells is typically

packed with a dense network of microtubules with a mesh size

of ;1 mm, initial filament localization using a thresholding/

skeletonization routine is insufficient. However, with a graph-

ical interface that enables the user to provide an initial estimate

of the filament position, it is possible to implement our simple

algorithm with minor modifications. Alternatively, the initial

filament localization may be accomplished with automated

edge-detection routines (21). A modification for handling

filament intersections must also be added to our algorithm for

complex networks. This can be accomplished by introducing a

x2 goodness-of-fit parameter for the Gaussian fit to the intensity

profile of the filament cross-section. In this way, filament

intersections, for which the intensity profile is poorly fit to a

Gaussian, can be easily distinguished from nonoverlapping

segments of the filament. Such filament positions can then be

interpolated between neighboring sampled positions. In Fig.

10, we demonstrate that we can track a single microtubule

through the dense network in a fixed tissue-culture cell using

such an approach (4).

DISCUSSION

We have developed and characterized a simple but robust

algorithm for precisely tracking fluorescent filaments. To

study biopolymer bending dynamics using this algorithm,

we took care to identify and characterize the main sources of

error that arise in these measurements.

1. Intrinsic noise makes the bending fluctuations appear

larger and therefore makes the filament look softer.

2. Correlated fluctuations appear to have a smaller variance

than uncorrelated fluctuations evaluated at longer times,

and thus cause error since the filament appears stiffer.

3. Long exposure times relative to relaxation time can cause

the filament to blur, making the fluctuations appear

smaller and, thus, the filament appear stiffer.

4. Improper mode decomposition can lead to mode-mixing

effects that hinder interpretation of the dynamic behavior

of filaments.

FIGURE 9 (A) Comparison between

the decorrelation of the first Fourier

mode (green squares) and the corre-

sponding normal mode (blue circles)

of the microtubule shown in Fig. 6 A.

The normal mode was obtained from a

sum of odd Fourier modes, as described

in the Appendix. The relaxation time

obtained from a fit to a single expo-

nential is 0.84 s for the Fourier mode

and 0.82 s for the normal mode. (B)

Relaxation times of bending modes of

actin filaments (circles) and microtu-

bules (squares) plotted as a function of

wavevector q�: Solid symbols represent

data obtained using short exposure times (5–10 ms). The data for actin filaments are consistent with a q�4
� dependence (solid line) expected from simple

hydrodynamic drag (Eq. 7). For microtubules, we find a deviation from q�4
� at q� . 0:3 mm�1 (solid line, fit to Eq. 9; dotted line, fit to q�4

� ). The inset shows the

same data normalized as tkq4
� plotted versus q�: Black crosses are data for microtubules from Janson and Dogterom (7).
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Each of these sources of error can affect measurements of

bending rigidity and/or relaxation time, and need to be

carefully considered.

Filament bending rigidity

Using our precise tracking algorithm, we determine the

persistence length and relaxation timescales of thermally

fluctuating actin filaments and microtubules. Consistent with

previous studies, we find that microtubules are two orders of

magnitude stiffer than actin filaments. Both actin filaments and

microtubules show a wavevector dependence of their bending

amplitude that agrees well with expectations from the wormlike

chain model. Actin filaments have a persistence length of ;17

mm, independent of filament length. Interestingly, for micro-

tubules we find a weak dependence on the filament length, with

short microtubules appearing softer than long ones.

The persistence lengths plotted in Fig. 8, A and B, are

essentially averages over multiple q-values, since they are

obtained by fitting multiple bending modes to Eq. 5 (see Fig.

6 B). Thus, the apparent length dependence of the bending

rigidity of microtubules in Fig. 8 B could actually reflect a

q-dependence. To test this, we plot the persistence length

obtained from the variance of each mode as a function of the

corresponding wavevector, as shown in Fig. 11 A. Although

there does not appear to be a strong correlation at small

wavevector, high-wavevector fluctuations indeed appear to

be softer. These soft high-wavevector modes would tend to

make shorter filaments appear softer, since their relative

contribution to the average stiffness (obtained from a fit of

multiple modes to Eq. 5) would be larger. One possible

explanation for this wavevector dependence is that at

sufficiently high wavevectors, mode amplitude fluctuations

due to filament tracking noise dominate over thermal

bending fluctuations. This is unlikely, however, since modes

in the noise regime obey the noise relationship (Eq. 3) that is

easily identifiable, as illustrated in Fig. 6 B. Moreover, we

only considered modes that clearly decorrelated with lag

time, which is never true for modes in the noise regime.

Thus, the high wavevector fluctuations we measure are not

directly affected by intrinsic noise fluctuations.

Although intrinsic noise does not directly contribute to the

measured fluctuations, it is possible that noise still indirectly

affects the measurements, since it introduces a bias: high

wavevector fluctuations can be detected above the noise floor

only if the filament is sufficiently soft. This effect is likely to

arise for microtubules in particular because of the large

filament-to-filament variability of the persistence length.

Indeed, using conservative values for the noise floor (taking

an RMS noise of 0.5 pixel), an estimate of the location of this

bias agrees with the trend in Fig. 11 A (solid line). Further

support for this comes from the fact that within individual

filaments there is no detectable wavevector dependence of

the bending rigidity, as can be seen in the rescaled data in

Fig. 11 B. As expected from the plot, linear regression shows

no statistically significant correlation. Interestingly, although

our data are consistent with the findings of Pampaloni et al.

(15), intrinsic noise biasing likely contributes to the small

correlation we find between total filament length and rigidity,

as shown by the corresponding noise boundary in Fig. 8 B.

Indeed, such artifacts introduced by noise limitations could

FIGURE 10 Fluorescence image of a monkey kidney epithelial cell that

has been fixed and stained, showing microtubules near the cell edge. We

track one microtubule by combining the automated filament tracking

algorithm with a manual initial filament identification. On the right is the

fluorescence image with the filament coordinates overlaid in red.

FIGURE 11 Persistencelengthofmi-

crotubulebending modes as a function of

the corresponding wavevector q. (A) The

persistence length appears to be lower at

higher wavevectors, but this is likely due

to a bias caused by intrinsic noise

limitations. The dotted line denoting

the noise-limited regime was obtained

using conservative values for the noise

floor (RMS error of 0.5 pixel) in Eq. 3.

(B) Within individual filaments, there is

no dependence of the persistence length

obtained from each mode (normalized

by the persistence length averaged over

all modes) on wavevector (normalized

by the wavevector averaged over all

modes). Each filament is shown with a

different symbol.
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also contribute to the bending rigidity/length correlation

found in this recent study. Further experimental work in-

corporating a careful analysis of the noise will be required to

determine whether there is indeed a significant dependence

of the rigidity on microtubule length, and to elucidate the

precise origin of this potentially interesting finding (15).

Bending relaxation timescales

By studying the time evolution of the mode amplitudes, we

found that actin filaments display relatively simple bending

dynamics, whereas microtubule bending reflects a more

complex mechanical behavior. The relaxation times of actin

filaments are consistent with the q�4
� -wavevector depen-

dence expected from hydrodynamic drag. Microtubules,

however, appear to cross over from a hydrodynamically-

dominated relaxation regime at long length scales, l . 20 mm

to a wavevector-independent relaxation regime at shorter

length scales, l , 20 mm:
These anomalous relaxation timescales do not appear to be

due to any of the sources of measurement error we identified.

In particular, if high-wavevector relaxation timescales were

affected by the exposure time of the camera, then the

relaxation timescales would become smaller and not larger,

as we have observed. We addressed the possibility of ex-

posure time effects by obtaining data using much shorter

exposure times (Fig. 9 B, solid symbols). These data show

a similar trend, although some points remain consistent with

a simple q�4
� scaling. Although the actin relaxation time-

scale data show a very slight deviation from a perfect

q�4
� -dependence possibly due to measurement errors, for

microtubules the marked spread in the data showing devi-

ation from the expected q�4
� -dependence does not appear to

result from measurement error, and highlights the heteroge-

neity of the dynamic behavior of microtubules.

As discussed above, it was recently suggested that

structural changes in the form of interprotofilament shearing

lead to a filament-length-dependent stiffness (15). Interest-

ingly, the model described there would seem to lead to a

reduced effective stiffness, and therefore reduced relaxation

rate for short wavelength modes. However, we find no

evidence for a true wavevector-dependent rigidity (Fig. 11).

Moreover, the strong trend in our microtubule relaxation

time data could not be explained by the small stiffness bias

we observe, since the normalized relaxation times (Fig. 9,

inset) remain consistent with a wavevector-independent

relaxation regime. The anomalous microtubule relaxation

times thus appear to reflect some form of viscous dissipation

within a heterogeneous population of microtubules.

To estimate the dissipative parameter g9 in Eq. 8, we adopt

a simple physical picture for the microtubules (16). For an

elastic filament composed of a porous or viscoelastic gel-like

material, internal dissipation results from the flow of a fluid

of viscosity h9 through pores of size j: This leads to

g9 ¼ h9a6=j2; where 2a is the filament diameter. Wave-

vector-independent relaxation times for bulky mitotic chro-

mosomes appear to be described by such a picture (16).

Because the diameter of microtubules is ;25 nm, whereas

actin filaments are a more slender 7 nm, similar internal

dissipation should be more apparent for microtubules; this is

qualitatively consistent with our findings. However, the

high-frequency rheology of actin solutions (35–37) shows no

evidence of deviations from pure hydrodynamic drag up to

frequencies as high as 100 kHz, corresponding to relaxation

times up to four orders of magnitude smaller than for

microtubules in this study. This fact cannot be explained by

the difference between microtubule and actin diameters

alone. Specifically, the bending moduli of both microtubules

and actin are consistent with the simple prediction k ¼ Ea4

of elasticity theory, where the Young’s modulus E � 1 GPa

for both. Thus, the model above for porous filaments would

result in a relaxation rate of order h9ða=jÞ2=E: It seems more

likely that anomalously large values of g9 for microtubules,

as compared with actin, are due to slow structural fluctua-

tions or conformational changes (16).

CONCLUSIONS

We have demonstrated that bending fluctuations of fluo-

rescently-labeled biopolymers can be tracked with high

spatial and temporal resolution using a simple and robust

automated subpixel tracking algorithm. Using this algorithm,

we confirmed previous studies reporting a persistence length

of actin filaments of ;17 mm, and microtubule persistence

lengths on the order of a few millimeters. For microtubules,

we found that a correlation between persistence length and

filament length can arise due to biasing from intrinsic noise

limitations. By studying the time evolution of actin bending

fluctuations, we found that their relaxation times display a

q�4
� hydrodynamic scaling, whereas some microtubules

appear to transition into a high-wavevector regime domi-

nated by surprisingly large internal viscous dissipation.

These results emphasize the heterogeneous mechanical be-

havior of microtubules, and suggest that microtubules

display anomalous bending dynamics that reflect their com-

plex molecular structure.

APPENDIX

To understand the time dependence of the mode amplitude fluctuations (Fig.

6 A), we consider the following Langevin equation for changes in the

transverse position u(s,t) of the filament as a function of arclength, s, and

time, t (5,8,10,38):

k
@

4
u

@s4 1 g
@u

@t
¼ f ðs; tÞ: (A1)

The first term accounts for the elastic restoring force prescribed by Eq. 4, the

second term is the hydrodynamic drag on the filament as it moves through

the viscous buffer, and the third term is the d-function correlated random

thermal noise acting along the filament.
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Following Aragon and Pecora (38), we find solutions to the equation of

motion (Eq. A1) in terms of normal modes jlðsÞ; which are solutions to the

eigenvalue equation

k
@

4
jl

@s
4 ¼ lljl; (A2)

with the boundary conditions corresponding to no net forces or torques on

the ends,

@
2
jl

@s
2 ¼

@
3
jl

@s
3 ¼ 0: (A3)

Here, the eigenvalues are given by ll ¼ kðal=LÞ4; where cosðalÞ coshðalÞ ¼
1: To within better than 0.4%, the solutions of the latter are approximately

given by al ffi ðl 1 1=2Þp for l $ 1; where this approximation becomes in-

creasingly accurate for the higher modes. Thus, even though the al will

appear raised to the power of four in the expressions below, we will make

no more than ;1.5% error using the approximation above.

The solutions to Eq. A2 are orthogonal. Thus, we can construct an

orthonormal basis for functions on ð�L=2;L=2Þ; given by

jl ¼

1ffiffiffi
L
p 3

cosðals=LÞ
cosðal=2Þ 1

coshðals=LÞ
coshðal=2Þ

� �
For l ¼ 1; 3; 5 . . .

1ffiffiffi
L
p 3

sinðals=LÞ
sinðal=2Þ 1

sinhðals=LÞ
sinhðal=2Þ

� �
For l ¼ 2; 4; 6 . . .

8>><
>>:

(A4)

The solutions we seek can be expressed as

uðs; tÞ ¼ +
N

l¼1

JlðtÞjlðsÞ: (A5)

The Langevin equation can also be written now in terms of the amplitudes

JlðtÞ ¼
Z

jlðs9Þuðs9; tÞds9 and flðtÞ ¼
Z

jlðs9Þf ðs9; tÞds9

g
d

dt
Jl ¼ �llJl 1 fl: (A6)

The solutions to this are of the form

JlðtÞ ¼ Jlð0Þe�vlt 1
e
�vl t

g

Z t

0

e
vlt9flðt9Þdt9 (A7)

for t $ 0: This allows us to calculate the correlation functions

ÆJlðtÞJmð0Þæ ¼ ÆJlð0ÞJmð0Þæe�vl t; (A8)

since ÆflðtÞJmð0Þæ ¼ 0: However, given the time translation invariance of

this result, as well as the nondegenerate spectrum of relaxation rates

vl ¼ ll=g; this only makes sense if ÆJlðtÞJmð0Þæ ¼ 0 for all l 6¼ m: This

can also be seen from the fact that the bending energy

k

2

Z
@

2
u

@s
2

� �2

ds ¼ 1

2
+

l

llJlJl; (A9)

which results in Gaussian distributed amplitudes

ÆJlJmæ ¼ kT

ll

dl m: (A10)

Here, we have used partial integration for the bending energy, together with

the force- and torque-free boundary conditions.

Of course, we could have also used the more familiar Fourier modes

bnðsÞ ¼
ffiffiffi
2

L

r
sin

pn

L
½s 1 L=2�

	 

; (A11)

but only for the statics. These are not normal modes for the dynamics. The

Fourier amplitudes BnðtÞ ¼
R

bnðs9Þuðs9; tÞds9 now satisfy

ÆBnBmæ ¼ kT

fn

dnm; (A12)

where this is an equal-time correlation function and fn ¼ kðpn=LÞ4:
We note that the last two terms of Eq. A1 both depend on the local

position/velocity of the polymer. As these variables are nonlocal in the

tangent angle variables, it is not possible to write this Langevin equation in

terms of u(s). However, for weakly bending filaments, the local slope of the

filament uðs; tÞ ¼ duðs; tÞ=ds can also be used to describe the shape. This

shape can be further described by the Fourier amplitudes above:

an ¼
Z

gnðs9Þuðs9; tÞds9; (A13)

where

gnðsÞ ¼
ffiffiffi
2

L

r
cos

pn

L
½s 1 L=2�

	 

: (A14)

In terms of the normal modes, the amplitudes anðtÞ can be expressed as

anðtÞ ¼ +
N

l¼1

JlðtÞ
Z

gnðsÞ
d

ds
jlðsÞds: (A15)

We define the matrix

Mnl ¼
Z

gnðsÞ
d

ds
jlðsÞds: (A16)

Thus, the correlation of amplitudes anðtÞ can be found in terms of the normal

modes:

ÆanðtÞanð0Þæ ¼ +
N

l¼1

ÆJlðtÞJlð0ÞæðMnlÞ2 ¼ +
N

l¼1

kT

ll

ðMnlÞ2e�vl t:

(A17)

We note that the functions gnðsÞ are alternately odd and even, whereas the

functions jlðsÞ are alternately even and odd. Thus, Mnl ¼ 0; unless n and l

are either both odd or both even. For example, LM1l ¼ 7.05, 0, 5.69, 0, 5.66,

0, for l ¼ 1, 2, . . . 6, whereas LM3l ¼ �0.377, 0, 12.29, 0, 6.21, 0, for l ¼ 1,

2, . . . 6.

Alternatively, the matrix inverse M�1 can be used to express the normal

mode amplitudes Jl in terms of the measured amplitudes an:

JlðtÞ ¼ +
N

m¼1

ðM�1ÞlmamðtÞ; (A18)

so that

ÆDJlðtÞ2æ [ Æ½JlðtÞ �Jlð0Þ�2æ ¼ +
N

m¼1

ÆDamðtÞ2æððM�1Þl mÞ
2

¼ kT

ll

ð1� e�vl tÞ: (A19)

Since the matrices describing the linear transformations between Jl and an

are easily evaluated, this procedure provides a practical way to determine the

normal-mode relaxation spectrum in terms of the an that can be measured as

discussed above.
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For large l, the dominant term in this sum is for m ¼ l, since the effect of

the ends of the filament become negligible in this limit. Thus, we expect that

for large enough n, the relaxation of an is approximately single-exponential

with relaxation rate

vn ffi kð½n 1 1=2�p=LÞ4=g: (A20)

At the other end of the spectrum, for n¼ 1, 2, the relaxation of an will also be

approximately single-exponential with relaxation rate vn for long times,

since the most slowly relaxing mode in Eq. A17 is for l ¼ n when n ¼ 1, 2.

The corrections to this approximate single-exponential behavior, due

to modes l ¼ n 1 2, both have amplitudes smaller by approximately

ln=ln12 ¼ ½ðn 1 1=2Þ=ðn 1 5=2Þ�4 and relax substantially faster (specifi-

cally, by a factor of ln12=ln). Using the matrix entries Mnl above, we find

that the second term in Eq. A17 is smaller than the first by a factor of 0.022

(0.036) for n ¼ 1 (2). Perhaps surprisingly, even though the n ¼ 3, 4 modes

mix with the slowly relaxing l ¼ 1, 2 normal modes in Eq. A17, using the

Mnl above, we find the relative contribution of these slow modes to be 0.027

and 0.048, respectively. Including other subdominant terms in Eq. A17, we

expect that it is sufficient to keep only the l¼ n term, to within ;10–15%. This

explains why we find little evidence, in practice, for non-single-exponential

relaxation for any of the modes we examined. We have directly implemented

the procedure described above for several data sets for n ¼ 1–6 and find that

the correction is within our error bars. However, accounting for the correct

normal mode relaxation using Eq. A20 is essential for interpretation of the

dynamics of both microtubules and F-actin in our experiments.
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